Version: 2020.3
Language : English
Command line arguments
Unity Standalone Player command line arguments

Unity Editor command line arguments

Launching Unity

On macOS, type the following into the Terminal to launch Unity:

/Applications/Unity/Hub/Editor/<version>/Unity.app/Contents/MacOS/Unity -projectPath <project path>

On Linux, type the following into the Terminal to launch Unity:

/Applications/Unity/Hub/Editor/<version>/Unity.app/Contents/Linux/Unity -projectPath <project path>

On Windows, type the following into the Command Prompt to launch Unity:

"C:\Program Files\Unity\Hub\Editor\<version>\Editor\Unity.exe" -projectPath "<project path>"

When you launch Unity like this, it receives commands and information on startup, which can be useful for test suites, automated builds and other production tasks.

Note: The above instructions assume the relevant Editor is installed in the default location through the Unity Hub. Adjust the path in the command if you use an Editor installed in a different location. For more information about how to find your Editor’s location path, see Install and uninstall Editor versions.

Configuration arguments

You can run the Editor and build Unity applications with additional commands and information on startup. This page lists the command line arguments you can use to launch and configure a Unity Editor instance.

Command Details:
-createProject <pathname> Create an empty project at the given path.
-disable-assembly-updater <assembly1 assembly2> Specify a space-separated list of assembly names as parameters for Unity to ignore on automatic updates.

The space-separated list of assembly names is optional: pass the command line options without any assembly names to ignore all assemblies, as in example 1.

Example 1
unity.exe -disable-assembly-updater

Example 2
unity.exe -disable-assembly-updater A1.dll subfolder/A2.dll

Example 2 has two assembly names, one with a pathname. Example 2 ignores A1.dll, no matter what folder it is stored in, and ignores A2.dll only if it is stored under subfolder folder:

If you list an assembly in the -disable-assembly-updater command line parameter (or if you don’t specify assemblies), Unity logs the following message to Editor.log:

[Assembly Updater] warning: Ignoring assembly [assembly_path] as requested by command line parameter.”).

Use this to avoid unnecessary API Updater overhead when you import assemblies.

This argument is useful if you want to import assemblies that access a Unity API which doesn’t need updating. It’s also useful when you import assemblies which don’t access any Unity APIs (for example, if you have built some or all of your source code outside of Unity, and you want to import the resulting assemblies into your Unity project).

Note: If you disable the update of any assembly that needs updating, you might get errors at compile time, run time, or both, that are hard to track.
-disable-gpu-skinning Disable Graphics Processing Unit (GPU) skinningThe process of binding bone joints to the vertices of a character’s mesh or ‘skin’. Performed with an external tool, such as Blender or Autodesk Maya. More info
See in Glossary
at startup.
-executeMethod <ClassName.MethodName> or -executeMethod <NamespaceName.ClassName.MethodName> Execute the static method as soon as Unity opens the project, and after the optional Asset server update is complete. You can use this for tasks such as continuous integration, performing Unit Tests, making builds or preparing data.

To return an error from the command line process, either throw an exception which causes Unity to exit with return code 1, or call EditorApplication.Exit with a non-zero return code.

To pass parameters, add them to the command line and retrieve them inside the function using System.Environment.GetCommandLineArgs. To use -executeMethod, you need to place the enclosing script in an Editor folder. The method you execute must be defined as static.
-exportPackage <exportAssetPath1 exportAssetPath2 ExportAssetPath3 exportFileName> Export a package, given a path (or set of given paths). In this example, exportAssetPath is a folder (relative to the Unity project root) to export from the Unity project, and exportFileName is the package name. This option only exports whole folders at a time. You normally need to use this command with the -projectPath argument.
-importPackage <pathname> Import the given asset packageA collection of files and data from Unity projects, or elements of projects, which are compressed and stored in one file, similar to Zip files, with the .unitypackage extension. Asset packages are a handy way of sharing and re-using Unity projects and collections of assets. More info
See in Glossary
. Unity doesn’t display any import dialog.
-job-worker-count <N> Specify the maximum thread count for the Unity JobQueue Job Worker Count. You can also set this value as job-worker-count=<N> in boot.config for the Unity Standalone Player.
-logFile <pathname> Specify where Unity writes the Editor or Windows/Linux/OSX standalone log file. To output to the console, specify - for the path name. On Windows, use -logfile - <pathname> to direct the output to stdout, which by default is not the console.
-noUpm Disables the Unity Package Manager.
-openfile <path> Open the project from a path to a scene or package file. Alternatively, you can use the -projectPath argument
-password <password> Enter a password into the log-in form during the activation of the Unity Editor.
-projectPath <pathname> Open the project at the given path. If the pathname contains spaces, enclose it in quotes.
-quit Quit the Unity Editor after other commands have finished executing. This can cause error messages to be hidden (but they still appear in the Editor.log file).
-releaseCodeOptimization Enables release code optimization mode, overriding the current default code optimization mode for the session.
-setDefaultPlatformTextureFormat (Android only) Set the default texture compressionA method of storing data that reduces the amount of storage space it requires. See Texture Compression, Animation Compression, Audio Compression, Build Compression.
See in Glossary
to the desired format before you import a texture or build the project. This is so you don’t have to import the texture again with the format you want. The available formats are dxt, pvrtc, atc, etc, etc2, and astc.
-silent-crashes Prevent Unity from displaying the dialog that appears when a Standalone Player crashes. This argument is useful when you want to run the Player in automated builds or tests, where you don’t want a dialog prompt to obstruct automation.
-username <username> Enter a username into the log-in form during the activation of the Unity Editor.
-vcsMode <mode> Set the version control mode. Available modes are "Visible Meta Files", "Hidden Meta Files", Perforce, and PlasticSCM. You can use additional flags to fill out the configuration fields for the given version control mode. These flags are based on the Provider.GetActiveConfigFields method. For example, you can use the -vcPerforceUsername, -vcPerforcePassword, -vcPerforceWorkspace and -vcPerforceServer to set the Perforce username, workspace and server fields.

Note: <mode> arguments that contain spaces must be wrapped in double quotes (“).| |-vcsModeSession <mode>|Set the version control mode for this session. Available modes are "Visible Meta Files", "Hidden Meta Files", Perforce, and PlasticSCM. You can use additional flags to fill out the configuration fields for the given version control mode. These flags are based on the Provider.GetActiveConfigFields method. For example, you can use the -vcPerforceUsername, -vcPerforcePassword, -vcPerforceWorkspace and -vcPerforceServer to set the Perforce username, workspace and server fields.

Note: <mode> arguments that contain spaces must be wrapped in double quotes (”).
-version Print the version number of the Unity Editor in the command line, without launching the Editor.

Batch mode arguments

Use the following arguments to configure Unity’s batch mode. Batch mode enables Unity to run predefined tasks without additional input, which makes batch mode useful for automated tasks like testing. For more information, see Batch mode and built-in coroutine compatibility.

Command Details:
-accept-apiupdate Use this command line option to specify that APIUpdater should run when Unity is launched in batch mode.

Example:

unity.exe -accept-apiupdate -batchmode [other params]

The APIUpdater doesn’t run if you omit this command line argument when you launch Unity in batch mode. This might lead to compiler errors.
-batchmode Run Unity in batch mode. In batch mode, Unity runs command line arguments without the need for human interaction. It also suppresses pop-up windows that require human interaction (such as the Save Scene window); however, the Unity Editor itself opens as usual. You should always run Unity in batch mode when using command line arguments, because it allows automation to run without interruption.

When an exception occurs during execution of the script code, the Asset server updates fail, or other operations fail, Unity immediately exits with return code 1.

In batch mode, Unity sends a minimal version of its log output to the console. However, the Log Files still contain the full log information. You can’t open a project in batch mode while the Editor has the same project open; only a single instance of Unity can run at a time.

To check whether the Editor or Standalone Player is running in batch mode, use the Application.isBatchMode operator.

If the project has not yet been imported when using -batchmode, the target platform is the default one. To force a different platform, use the -buildTarget option.
‑ignorecompilererrors When you use this argument, Unity continues to start your application even if there are compilation errors.
-nographics When you run this in batch mode, Unity doesn’t initialize the graphics device. You can then run automated workflows on machines that don’t have a GPU. Automated workflows only work when you have a window in focus, otherwise you can’t send simulated input commands. -nographics does not allow you to bake GI, because Enlighten requires GPU acceleration.
Note: Output logs are turned off in this mode. To enable the creation of output logs, specify a file location using the command -logFile.

Build Arguments

Use the following arguments to build players for various platforms from the command line. For more information about building players with command line arguments, see Unity Standalone Player command line arguments.

Command Details:
-buildLinux64Player <pathname> Build a 64-bit standalone Linux player (for example, -buildLinux64Player path/to/your/build).
-buildOSXUniversalPlayer <pathname> Build a 64-bit standalone Mac OSX player (for example, -buildOSXUniversalPlayer path/to/your/build.app).
-buildTarget <name> Select an active build target before loading a project. Possible options are:

• Standalone
• Win
• Win64
• OSXUniversal
• Linux64
• iOS
• Android
• WebGL
• XboxOne
• PS4
• WindowsStoreApps
• Switch
• tvOS
-buildWindowsPlayer <pathname> Build a 32-bit standalone Windows player (for example, -buildWindowsPlayer path/to/your/build.exe).
-buildWindows64Player <pathname> Build a 64-bit standalone Windows player (for example, -buildWindows64Player path/to/your/build.exe).

Cache server arguments

Use the following arguments to configure Unity’s use of the cache server. For more information, see Cache ServerA standalone app that you can run on your local computer that stores the imported asset data to reduce the time it takes to import assets. More info
See in Glossary
.

Command Details:
-EnableCacheServer Tells Unity to use the newer Accelerator Cache Server. You must also use -cacheServerEndpoint to specify the address.
-cacheServerEndpoint Specifies the endpoint address if you are using the newer Accelerator Cache Server.

Example: -cacheServerEndpoint 127.0.0.1:10080. This overrides any configuration stored in the Editor Preferences. Use this to connect multiple instances of Unity to different Cache Servers.
-cacheServerNamespacePrefix Set the namespace prefix for the newer Accelerator Cache Server. Used to group data together on the Cache Server.

Example: -cacheServerNamespacePrefix MyProject
-cacheServerEnableDownload Enable downloading from the newer Accelerator Cache Server.

Example:-cacheServerEnableDownload true
-cacheServerEnableUpload Enable uploading to the newer Accelerator Cache Server.

Example:-cacheServerEnableUpload false
-CacheServerIPAddress <host:port> Enables usage of the older (v1) Cache Server, and specifies the IP Address to connect to on startup. This overrides any configuration stored in the Editor Preferences. Use this to connect multiple instances of Unity to different v1 Cache Servers.

Debugging arguments

Command Details:
-disableManagedDebugger Disables the debugger listen socket.
-diag-debug-shader-compiler Unity launches only one instance of the ShaderA program that runs on the GPU. More info
See in Glossary
Compiler, and forces its timeout to be one hour. Useful for debugging Shader Compiler issues.
-debugCodeOptimization Enables debug code optimization mode, overriding the current default code optimization mode for the session.
-enableCodeCoverage Enables code coverage and allows access to the Coverage API.
-force-d3d12-debug Enables the DX12 validation layer. This is useful for working on XRAn umbrella term encompassing Virtual Reality (VR), Augmented Reality (AR) and Mixed Reality (MR) applications. Devices supporting these forms of interactive applications can be referred to as XR devices. More info
See in Glossary
plugins or native plugins.
-force-d3d12-debug-gbv Enables the DX12 GPU-based validation. This is useful for working on XR plugins or native plugins.
-force-vulkan-layers Enables the Vulkan validation layer. This is useful for working on XR plugins or native plugins.
-stackTraceLogType Allow detailed debugging. All settings allow None, Script Only and Full to be selected (for example, -stackTraceLogType Full).

Graphics API arguments

Use the following arguments to force the Unity Editor to use a specific graphics API.

Command Details:
-force-d3d11 (Windows only) Make the Editor use Direct3D 11 for renderingThe process of drawing graphics to the screen (or to a render texture). By default, the main camera in Unity renders its view to the screen. More info
See in Glossary
. Normally the graphics API depends on Player SettingsSettings that let you set various player-specific options for the final game built by Unity. More info
See in Glossary
(typically defaults to D3D11).
-force-d3d12 (Windows only) Make the Editor use Direct3D 12 for rendering. Normally the graphics API depends on Player Settings.
-force-glcore Make the Editor use OpenGL 3/4 core profile for rendering. The Editor tries to use the best OpenGL version available and all OpenGL extensions exposed by the OpenGL drivers. If the platform isn’t supported, the editor uses Direct3D.
-force-glcoreXY Similar to-force-glcore, but requests a specific OpenGL context version. Accepted values for XY: 32, 33, 40, 41, 42, 43, 44 or 45.
-force-gles (Windows only) Make the Editor use OpenGL for Embedded Systems for rendering. The Editor tries to use the best OpenGL ES version available, and all OpenGL ES extensions exposed by the OpenGL drivers.
-force-glesXY (Windows only) Similar to -force-gles, but requests a specific OpenGL ES context version. Accepted values for XY: 30, 31 or 32.
-force-vulkan Make the Editor use Vulkan for rendering. Normally the graphics API depends on Player Settings.
-force-clamped Use this with -force-glcoreXY to prevent Unity from checking for additional OpenGL extensions, allowing it to run between platforms with the same code paths.

License arguments

Use the following arguments to process a Unity license or run the Unity Editor with different license options.

Command Details:
-createManualActivationFile Step one of a three-step process to manually activate a Unity license. For more information, see Generate a license activation file (.alf) from the command line.
-force-free Run the Editor as if there is a free Unity license on the machine, even if a Unity Pro license is installed.
-manualLicenseFile <yourulffile> Step three of a three-step process to manually activate a Unity license. For more information, see Generate a license activation file (.alf) from the command line.
-returnlicense Return the currently active serial-based license. Do not use -returnlicense to return a floating license. For more information, see Returning your license.
-serial <serial> Activate your Unity license with the specified serial number. For more information, see Activate a license from the command line.

Note: When you use this argument, you must also use the -batchmode argument. It’s also good practice to specify the -quit argument.

Metal arguments (macOS only)

Use the following arguments to configure Unity’s use of the Metal graphics API for Apple devices.

Command Details:
-force-device-index When using Metal, make the Editor use a particular GPU device by passing it the index of that GPU (macOS only).
-force-low-power-device (macOS only) If you use Metal, make the Editor use a low power device.
-force-metal Make the Editor use Metal as the default graphics API (macOS only).

Profiler arguments

Use the following arguments to configure Unity’s use of the ProfilerA window that helps you to optimize your game. It shows how much time is spent in the various areas of your game. For example, it can report the percentage of time spent rendering, animating, or in your game logic. More info
See in Glossary
.

Command Details:
-deepprofiling Enable Deep Profiling option for the CPU profiler.
-profiler-enable Profile the start-up of a Player or the Editor. When you use this argument with a Player, it has the same effect as building the Player with the Autoconnect Profiler option enabled in Build Settings.

When you use this argument with the Editor, it starts collecting and displaying Profiler information in the Profiler window on start-up of the Editor.
-profiler-log-file <Path/To/Log/File.raw> This argument sets up the Unity Profiler to stream the profile data to a .raw file on startup. It works for both Players and the Editor.
-profiler-capture-frame-count <NumberOfFrames> This argument sets how many frames the Profiler should capture in a profile when streaming to a .raw file on start-up. It only works on Players.
-profiler-maxusedmemory By default, maxUsedMemory for the Unity Profiler is 16MB for Players and 256MB for the Editor. You can use this argument to set the maxUsedMemory parameter to a custom size at start-up (for example, -profiler-maxusedmemory 16777216). The size is set in bytes.

Examples

*C# script in the project:*

using UnityEditor;
class MyEditorScript
{
     static void PerformBuild ()
     {
        BuildPlayerOptions buildPlayerOptions = new BuildPlayerOptions();
        buildPlayerOptions.scenes = new[] { "Assets/Scene1.unity", "Assets/Scene2.unity" };
        BuildPipeline.BuildPlayer(buildPlayerOptions);
     }
}

The following command executes Unity in batch mode, executes the MyEditorScript.PerformBuild method, and then quits upon completion.

Windows:

"C:\Program Files\Unity\Editor\Unity.exe" -quit -batchmode -projectPath "C:\Users\UserName\Documents\MyProject" -executeMethod
MyEditorScript.PerformBuild

macOS:

/Applications/Unity/Unity.app/Contents/MacOS/Unity -quit -batchmode -projectPath ~/UnityProjects/MyProject -executeMethod
MyEditorScript.PerformBuild

Unity Editor special command line arguments

You should only use these under special circumstances, or when directed by Unity Support.

Command Details:
-enableIncompatibleAssetDowngrade Use this when you have Assets made by a newer, incompatible version of Unity, that you want to downgrade to work with your current version of Unity. When you enable this, Unity presents you with a dialog asking for confirmation of this downgrade if you attempt to open a project that would require it.

Note: This procedure is unsupported and highly risky, and should only be used as a last resort.

Extra Editor arguments from packages

Additional Editor command line arguments are available when these packages are installed.

Package Details:
Burst See Burst package documentation.
Test Framework See Unity Test Framework package documentation.
Code Coverage See Code Coverage package documentation.
Command line arguments
Unity Standalone Player command line arguments
Copyright © 2023 Unity Technologies
优美缔软件(上海)有限公司 版权所有
"Unity"、Unity 徽标及其他 Unity 商标是 Unity Technologies 或其附属机构在美国及其他地区的商标或注册商标。其他名称或品牌是其各自所有者的商标。
公安部备案号:
31010902002961