Version: 2019.1
Niveles Objetivo de Compilación Shader
Using sampler states

Tipos de dato Shader y precisión

The standard Shader language in Unity is HLSL, and general HLSL data types are supported. However, Unity has some additions to the HLSL types, particularly for better support on mobile platforms.

Tipos de datos básicos

La mayoría de los cálculos en shaders se llevan a cabo en números de punto flotante (que sería float en lenguajes de programación regulares como C#). Existen varias variantes de tipos de punto flotante: float,half y fixed (así como las variantes de vector/matriz de ellas, comohalf3 y float4x4). Estos tipos difieren en precisión (y, en consecuencia, en rendimiento o consumo de energía):

Precisión alta: float

Valor de punto flotante de precisión más alta; Generalmente 32 bits (como float desde lenguajes de programación regulares).

Full float precision is generally used for world space positions, texture coordinates, or scalar computations involving complex functions such as trigonometry or power/exponentiation.

Precisión mediana: half

Valor de punto flotante de precisión media; Generalmente 16 bits (rango de –60000 a +60000, con unos 3 dígitos decimales de precisión).

La media precisión es útil para vectores cortos, direcciones, posiciones de espacio de objeto, colores de alto rango dinámico.

Precisión baja: fixed

Valor de punto fijo de precisión más baja. Generalmente 11 bits, con un rango de –2.0 a +2.0 y precisión 1 / 256th.

La precisión fija es útil para los colores regulares (normalmente almacenados en texturas regulares) y para realizar operaciones sencillas sobre ellos.

Tipos de dato Integer

Los enteros (tipo de datos int) se utilizan a menudo como contadores de bucle o índices de matriz. Para este propósito, generalmente funcionan bien en varias plataformas.

Dependiendo de la plataforma, los tipos enteros podrían no ser compatibles con la GPU. Por ejemplo, las GPU Direct3D 9 y OpenGL ES 2.0 sólo funcionan con datos de punto flotante, y las expresiones enteras de apariencia simple (que implican bits o operaciones lógicas) pueden emularse utilizando instrucciones matemáticas de punto flotante bastante complicadas.

Direct3D 11, OpenGL ES 3, Metal y otras plataformas modernas tienen soporte adecuado para tipos de datos enteros, por lo que el uso de los desplazamientos de bit y el bit masking funciona como se esperaba.

Tipos de vector/matriz compuestos

HLSL incorpora tipos vectoriales y matriciales que se crean a partir de los tipos básicos. Por ejemplo, float3 es un vector 3D con componentes .x, .y, .z, yhalf4 es un vector 4D de precisión media con componentes .x, .y, .z, .w. Alternativamente, los vectores pueden indexarse utilizando los componentes .r, .g, .b, .a, que es útil cuando se trabaja en colores.

Los tipos de matriz se construyen de manera similar; Por ejemplo float4x4 es una matriz de transformación 4x4. Tenga en cuenta que algunas plataformas sólo admiten matrices cuadradas, especialmente OpenGL ES 2.0.

Texture/Sampler types

Typically you declare textures in your HLSL code as follows:

sampler2D _MainTex;
samplerCUBE _Cubemap;

For mobile platforms, these translate into “low precision samplers”, i.e. the textures are expected to have low precision data in them. If you know your texture contains HDR colors, you might want to use half precision sampler:

sampler2D_half _MainTex;
samplerCUBE_half _Cubemap;

Or if your texture contains full float precision data (e.g. depth texture), use a full precision sampler:

sampler2D_float _MainTex;
samplerCUBE_float _Cubemap;

Precision, Hardware Support and Performance

One complication of float/half/fixed data type usage is that PC GPUs are always high precision. That is, for all the PC (Windows/Mac/Linux) GPUs, it does not matter whether you write float, half or fixed data types in your shaders. They always compute everything in full 32-bit floating point precision.

The half and fixed types only become relevant when targeting mobile GPUs, where these types primarily exist for power (and sometimes performance) constraints. Keep in mind that you need to test your shaders on mobile to see whether or not you are running into precision/numerical issues.

Even on mobile GPUs, the different precision support varies between GPU families. Here’s an overview of how each mobile GPU family treats each floating point type (indicated by the number of bits used for it):

Familia GPU float half fixed
PowerVR Series 6/7 32 16
PowerVR SGX 5xx 32 16 11
Qualcomm Adreno 4xx/3xx 32 16
Qualcomm Adreno 2xx 32 vertex 24 fragment
ARM Mali T6xx/7xx 32 16
ARM Mali 400/450 32 vertex 16 fragment
NVIDIA X1 32 16
NVIDIA K1 32
NVIDIA Tegra 3/4 32 16

Most modern mobile GPUs actually only support either 32-bit numbers (used for float type) or 16-bit numbers (used for both half and fixed types). Some older GPUs have different precisions for vertex shader and fragment shader computations.

Using lower precision can often be faster, either due to improved GPU register allocation, or due to special “fast path” execution units for certain lower-precision math operations. Even when there’s no raw performance advantage, using lower precision often uses less power on the GPU, leading to better battery life.

Una regla general es comenzar con la mitad de precisión para todo, excepto las posiciones y las coordenadas de textura. Sólo aumentar la precisión si la media precisión no es suficiente para algunas partes del cálculo.

Soporte para infinito, NaNs y otros valores especiales de punto flotante

El soporte para valores de punto flotante especiales puede ser diferente dependiendo de la familia de GPU (principalmente móvil) que esté ejecutando.

All PC GPUs that support Direct3D 10 support very well-specified IEEE 754 floating point standard. This means that float numbers behave exactly like they do in regular programming languages on the CPU.

Mobile GPUs can have slightly different levels of support. On some, dividing zero by zero might result in a NaN (“not a number”); on others it might result in infinity, zero or any other unspecified value. Make sure to test your shaders on the target device to check they are supported.

Documentación GPU externa

GPU vendors have in-depth guides about the performance and capabilities of their GPUs. See these for details:

Véase también

Niveles Objetivo de Compilación Shader
Using sampler states
Copyright © 2020 Unity Technologies
优美缔软件(上海)有限公司 版权所有
"Unity"、Unity 徽标及其他 Unity 商标是 Unity Technologies 或其附属机构在美国及其他地区的商标或注册商标。其他名称或品牌是其各自所有者的商标。
公安部备案号:
31010902002961