Legacy Documentation: Version 5.2
Using DirectX 11 in Unity
Graphics Command Buffers

Compute Shaders

Compute Shaders are programs that run on the graphics card, outside of the normal rendering pipeline. They can be used for massively parallel GPGPU algorithms, or to accelerate parts of game rendering. In order to efficiently use them, often an in-depth knowledge of GPU architectures and parallel algorithms is needed; as well as knowledge of DirectCompute, OpenCL or CUDA.

Compute shaders in Unity are built on top of DirectX 11 DirectCompute technology. On PC it requires Windows Vista or later and a GPU capable of Shader Model 5.0. Compute shaders are also supported on capable consoles and OpenGL ES 3.1 mobile devices.

Compute shader assets

Similar to normal shaders, Compute Shaders are asset files in your project, with *.compute file extension. They are written in DirectX 11 style HLSL language, with minimal amount of #pragma compilation directives to indicate which functions to compile as compute shader kernels.

Here’s a minimal example of a compute shader file:

// test.compute

#pragma kernel FillWithRed

RWTexture2D<float4> res;

[numthreads(1,1,1)]
void FillWithRed (uint3 dtid : SV_DispatchThreadID)
{
    res[dtid.xy] = float4(1,0,0,1);
}

Note that the example above does not do anything remotely interesting, it just fills the output texture with red.

The language is standard DX11 HLSL, with the only exception of a #pragma kernel FillWithRed directive. One compute shader asset file must contain at least one “compute kernel” that can be invoked, and that function is indicated by the #pragma directive. There can be more kernels in the file; just add multiple #pragma kernel lines.

Please note when using multiple #pragma kernel lines that comments of the style // text are not permitted on the same line as the #pragma kernel directives and will cause compilation errors.

The #pragma kernel line can optionally be followed by a number of preprocessor macros to define while compiling that kernel, for example:

#pragma kernel KernelOne SOME_DEFINE DEFINE_WITH_VALUE=1337
#pragma kernel KernelTwo OTHER_DEFINE
// ...

Invoking compute shaders

In your script, define a variable of ComputeShader type, assign a reference to the asset, and then you can invoke them with ComputeShader.Dispatch function. See scripting reference of ComputeShader class for more details.

Closely related to compute shaders is a ComputeBuffer class, which defines arbitrary data buffer (“structured buffer” in DX11 lingo). Render Textures can also be written into from compute shaders, if they have “random access” flag set (“unordered access view” in DX11), see RenderTexture.enableRandomWrite.

Texture samplers in compute shaders

Textures and samplers aren’t separate objects in Unity, so in order to use them in compute shader you have to follow some Unity specific rules:

  • Either use same as texture name, with “sampler” in front (e.g. Texture2D MyTex; SamplerState samplerMyTex). In this case, sampler will be initialized to that texture’s filter/wrap/aniso settings.
  • Or use one of “predefined” samplers; name has to have “Linear” or “Point” (for filter mode) and “Clamp” or “Repeat” (for wrap mode). For example, "SamplerState MyLinearClampSampler" - this will have linear filter and clamp wrap mode.

Cross-platform support

As with regular shaders, Unity is capable of translating compute shaders from HLSL to GLSL. Therefore for the easiest cross-platform builds it is recommended to write compute shaders in HLSL. However, it is also possible to write compute shaders in GLSL by inserting your code between GLSLPROGRAM / ENDGLSL tags.

In order to achieve shaders working on multiple different platforms one should consider these limitations:

  • DX and OpenGL have different data layout rules. Automatically translated GLSL shaders use std430 layout on compute buffers. Therefore for example using float3 based structured buffers will cause compatibility issues as DX allows tight packing but OpenGL enforces padding to float4. Scalars, two-component and four-component vectors are safe to use as they are. Extra care should be taken when constructing structs.
  • OpenGL ES 3.1 guarantees support for only 4 simultaneous shader storage buffers. Actual implementations typically support a bit more but in general one should consider grouping related data in structs as opposed to having each data item in its own buffer.
Using DirectX 11 in Unity
Graphics Command Buffers
Copyright © 2023 Unity Technologies
优美缔软件(上海)有限公司 版权所有
"Unity"、Unity 徽标及其他 Unity 商标是 Unity Technologies 或其附属机构在美国及其他地区的商标或注册商标。其他名称或品牌是其各自所有者的商标。
公安部备案号:
31010902002961